CONVECTIVE STABILITY OF A VERTICAL LAYER
OF A NON-NEWTONIAN LIQUID
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We consider the convective stability of a non-Newtonfan (nonlinearly viscous) liguid in a two-
dimensional vertical channel. We solve a nonlinear boundary value problem concerning plane-
parallel stationary convection for the case of piecewise-linear and power-law type rheologi-
cal characteristics. We discuss the problem concerning the stability of equilibrium and of
stationary motions.

1. In[1, 2] an experimental study was made of the origin of convection in a horizonta] layer of liquid
heated from below. In [1] an attempt was made, with the aid of an energy method, to estimate the critical
Rayleigh number for power-law liquids. This attempt must be considered unsuccessful. If the initial vis-
cosity is equal to zero or infinity, as is the case in power-law models, then there is no finite critical
Rayleigh number defining the stability boundary relative to small perturbations; the equilibrium with re-
spect to small perturbations is either stable for all Rayleigh numbers (pseudo-plastics) or is unstable for
an arbitrarily small Rayleigh number (dilatational liquids). In judging stability, consideration must be
given to finite amplitude perturbations. As was noted in 3], the energy method used in [1] was applied
incorrectly.

In the case of a model with finite initial viscosity the notion of a critical Rayleigh number is justified.
In this case, as was shown in [2], measurement of the critical temperature gradient yields a sufficiently
exact method of determining the initial viscosity.

Let a two-dimensional infinite layer of a non-Newtonian liguid, bounded by the vertical planes x= +h,
be heated from below, We consider a stationary plane-parallel convective motion for which only the verti-
cal velocity component is non-zero. In this case (the z axis is directed vertically upwards)

ve=v,=0, v =0(2) (1.1)
and the distributions of temperature T, stress 7, and pressure p have the form
T'=—-Az+8(z), v=71(2), p=p@® (1.2)
Here A is the constant vertical temperature gradient corresponding to mechanical equilibrium.

From the convection equations, written in the Boussinesq approximation, we obtain equations for the
functions v, ¢, 7, and p
1 1 dp

- Ve = - gz =C

p dz (1'3)

0+ 4v=0

Here p is the average density, g is the gravitational acceleration, 8 and y are, respectively, the thermal
expansion and thermal diffusivity coefficients, and C is a separation of variables constant. The prime indi-
cates differentiation with respect to x, To Eqgs. (1.3) must be added the rheological relation connecting the
shear stress with the velocity gradient
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T=10) (1.4)

Along the channel boundaries the velocity vanishes and a linear temperature distribution is maintained
along the vertical; in addition, we assume that the condition for the convective flow to be closed is satisfied,
which means that the outflow through an arbitrary section is equal to zero. Thus we have

v(th)=0(th)=0, vdz =0 (1.5)

Further, we consider a stationary motion, corresponding to the lower level of instability of equili-
brium. In this motion the velocity profiles v and the temperatures 4 are odd functions relative to the
middle of the layer, x=0; the separation constant C =0, and the closure condition is satisfied.

The problem we have formulated has a trivial solution (v = 6= 7 =0), corresponding to equilibrium
(stable or unstable, depending on the relationship among the parameters) of the liquid heated from below.
Under certain conditions nontrivial solutions are possible; we consider these in what follows.

In the case of a Newtonian liquid the relation (1.4) is linear and nontrivial solutions exist only for
certain values of the temperature gradient (Rayleigh number), these values forming a discrete spectrum
(see [4]). These characteristic values of the gradient are, at the same time, critical values from the point
of view of the stability of equilibrium. The amplitude of the characteristic motions turns out to be indeter-
minate. In the case considered here of a non-Newtonian ligquid the dependence of the stress (1.4) on the
velocity gradient is nonlinear. This leads to qualitative differences. Stationary motions exist, not at iso-
lated points of the spectrum, but at all the points of some interval of values of the temperature gradient
(Rayleigh number). The amplitude of the motions, by virtue of the nonlinearity of the boundary value pro-
blem, is found to be determinate.

2. We consider a liguid with a piecewise-linear rheological characteristic (Fig. 1). The dependence
T(v') i8 of the form

mv', — T T
T=1{To+ P (v — '), T>T 2.1)
— T+t (V' + ), T — 1T

The characteristic (2.1) contains three independent parameters: aa initial viscosity u, and a limiting
viscosity u,; also, a limiting tangential stress 7, (v)=T7(/uy). The viscosity is constant on each of the
stress intervals in the functional dependence (2.1) and changes by a jump at 7=+ 7;,. A piecewise-linear
characteristic can be considered as an approximation for describing nonlinearly viscous liguids with finite
values for the initial and the limiting viscosity. From the relation (2.1) we can obtain the relations cor-
responding to pseudo-plastic (p, > uy) and dilatational (4 < u,) behavior (curves 1 and 2 in Fig. 1). As
limiting cases, we have a Bingham liquid (p; =, curve 3) and the limiting case of a dilationalliquid with
zero initial viscosity (u; =0, curve 4). For a Newtonian liquid we have pu,=u,.

Keeping in mind the characteristic (2.1), we write the equations of plane-parallel convection in di-
mensionless form. We introduce the following units: distance h, velocity y/h, temperature Ah, and stress
uy X /b2, We can then write Eqs. (1.3), the rheological relation (2.1), and the boundary conditions (1.5) in
the form '

v+RO=0, 08 +v=0

w', [t]<B
v= {B(i-— {/wysignv’ +-v', |t|>B 2.2)
1

v(1) =0(+1) =0, S vdz = 0
—1
The boundary value problem (2.2) contains three dimensionless parameters: the Rayleigh number R,
defined for the viscosity u,; the dimensionless limiting stress B; and the ratio of viscosities, u. Thus,

R = pgBARt B = Tt 2

pr 0 T p o BT m (2.3)
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The basic stationary motion corresponds to an odd solution of the problem (2.2) relative to the point
x=0. In view of the oddness of the solution, it is sufficient to consider the region 0= x=1. In this region
we can single out a middle zone @ =< x = b (subscript 0) with a small velocity gradient and viscosity pug;
the zone 0 = x < a (subscript 1) in which 7 > 7,, and in which the velocity gradient is positive and in
magnitude greater than the limiting value; and the zone b = x = 1 (subscript 2) with a negative velocity
gradient and T < —7; (in zones 1 and 2 we have viscous flow with viscosity u,).

For each of these zones we can write the general solution of Egs. (2.2). Taking into account the
vanishing of the velocity and the temperature at the points x=0 and x=1, we have

v, == Dysinrz 4+ D, shrzx

8, = r-2 (D, sin re — D, sh rx)

=Bl —pY+rDcosrz+ D, ch rz)

v, = Cysinr(1 —2) + Cyshr(1—2)

=r-2C,sinr(1 —z) —Cyshr (1 — z)]

»w=—B( —p,-l)er[Clcosr(i—x)—{-Czchr(i—x)]
vy = Eysin sz + E, cos sz + Egshsz + E chsz

8, = s~2 (E, sin sz - E; cos sz — E, sh sz — E, ch s1)

T, == ps (£ cos sz — E, sin szt + Ezch sz + E, sh sz)

D
]
|

(2.4)

where r=R1/4, s=(R/u)l/".

For the determination of the eight arbitrary constants and the unknown parameters a and b, defining
the locations of the viscous zone boundaries, we have matching conditions at the points a and b (continuity

of the velocity, temperature, thermal flow, and stress) and also the conditions defining the location of the
zone boundaries

v(a) = v (a), 0, (a) = 6 (a), 6,'(a) = 8, (a)

(@) =1 (a), 7t,(a) =B

2o (B) = v, (8), 0 (0) = 8, (B), O, (b) = 8, (b) 29
W) =1,(), w(()=~—B

From an analysis of the relations (2.5) it follows that all the profiles are symmetric relative to the
point x=1/2; in particular,a= 1—b, The constants appearing in Eqgs. (2.4) are equal to

B . —, —,
Dy = e |20+ (1-- Vi) thrathe + (1 — Vi) thratg ¢]

|

D = e [— W+ (L + Vi) tgratgp + (1 — Vi tgrathe]

, B sin s/2 PR Y v o e
E, =7%10;—Q[2Lgrat-hra the 4 p¥ (14 YV tgra 4+ p (A — Vi) thra)

B 2 1 =\ 1, o
Ey= BB 5igrathratg g+ wi(t + Vidthra + pi(t — Vi) tgral

Ez = Ctg—;—El, E4 = ——Cth—;—E‘q, Cl = Dl, Cz = Dg
8=(1+Vp(tgratge +thrathg) + (1 — p) (thratg e 4+ tgrath¢)
=s(y—a

The relation defining the parameter a as a function of R and u has the form

(1 + Vutgratgp — thrath¢) + (1 — ¥V p)*(tgra thy — (2.6)
~—thratg @) + 4p'tgothetgrathra — 4p’ =0 )

We give the expression for the maximum flow velocity

1 B .
U = Uy (_2_) = W[Ztg rathra(shp + sing) 4 @.7)

+ ph(d 4+ V) (tgrache — thracosg) + p¥ (1 — ¥ 'p) (th rach ¢ — tg racos ¢)]
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3. The results obtained in solving numerically the transcendental equation (2.6) are shown in Fig. 2,
which presents the family of curves a(r) for various values of the viscosity ratio u. Figures 3 and 4 show
the dependence of the amplitude of the velocity on r. The numbering of the curves, namely, 0, 1, 2, ..., 11,
corresponds to values of pu=0, 1074, 1072, 0.1, 0.5, 1, 1.2, 2, 4, 8, 16, .

We consider the pseudo-plastic liquids (u =p, /g, > 1). Analysis of the relations (2.6), (2.7) shows
that in this case a nontrivial solution, corresponding to plane-parallel convection, exists in the restricted
interval of Rayleigh numbers 74 <R< pum, i.e., r <r<pl/ir.

The point r = u1/4r is a critical point in the sense of the stability of equilibrium relative to small
perturbations. Small perturbations of equilibrium correspond to small v, i.e., to small stresses 7. Such
perturbations evolve in the same way as in a Newtonian liquid with viscosity coefficient n, (the initial part
of the rheological curve). An equilibrium crisis relative to these perturbations is determined by the condi-
tion pg,BAh“/ul x = 7% Changing over to the parameters R and p, we write this condition in the form R /u =
74, Le., r=pl/An. Forr < ul/dr the equilibrium is stable relative to small perturbations; for r > p!/4 ¢
the equilibrium is unstable .

In the region 7 < r < u!/4 7, in addition to the equilibrium solution we also have a nontrivial finite
amplitude solution with determinate values of the parameters a and vy,. With increasing r in this region
the parameter a, as is evident from Fig. 2, decreases monotonically from 1/2 to 0. The amplitude v, is
proportional to the dimensionless limiting stress B. With an increase of r in the region 7 < r <« #1/2 n the.
amplitude v, decreases from infinity to some finite value B /7y ; at the point r =u1/*n the amplitude under-
goes a jump.

We can obtain asymptotic expressions for a and v, from Eqgs. (2.6) and (2.7). Close to the lower
critical point r=1n

Bp—1)

a=T——£;—1—)—(T—ﬂ)+..., Um——-:m-*—... (3‘1)

Close to the upper critical point r=pY4x

“= [T(ps:_i)_ <1 - n:)] (3.2)

The finite amplitude stationary solution found here is unstable. For r < pul/*r the equilibrium is
stable relative to small perturbations. If we insert into the equilibrium a perturbation of finite amplitude,
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entering sufficiently far from the limits of the initial portion of the rheological curve, then layers are
formed in the flow with the smaller viscosity u,. This means a lowering of the effective viscosity of the
gystem, as a result of which a perturbation of sufficiently large amplitude is found to be increasing. If the
amplitude is less than v, defined by the expression (2.7), the perturbation decays; if the amplitude ex-
ceeds vy, the perturbation increases without bound.

Thus, in the case u > 1 the equilibrium is stable with respect to small perturbations for r < pul/fr and
unstable for r > pl/ 7. Inthe region 7 < r <u!/4r the equilibrium is unstable relative to finite perturbations
of amplitude greater than vy, ("rigid" perturbation). For r < 7 the equilibrium is stable with respect to
perturbations of arbitrary amplitude.

When p > 1, there are no stable stationary motions of finite amplitude. This is connected with the
specific geometry of the problem in question, namely, plane-parallel motions in an infinite layer. In this
case the nonlinear convective terms in the equations of motion and heat conduction, i.e., the terms (vV) v
and vV ¢, vanish identically, and the nonlinearity associated with the rheological curve t(v') is of a destabi-
lizing nature for u > 1.

With an increase in p, the Rayleigh number, defining the upper critical point, increases and tends
towards infinity for 4 — «. This limiting case corresponds to a Bingham liquid (u, = <, u, finite). The
equilibrium is stable relative to small perturbations for all R. Only a rigid perturbation of the convection
is possible for R > 74; the critical amplitude is given by the value

24B 1
Um = r3(1 — 2a)* 3(tgra+thra) 4 r(1—2q)

The boundary a of the viscous and plastic zones of flow is obtained from the equation
r{1 —2a)(tgra —thre) —4 =0

These expressions are obtained from Egs. (2.6) and (2.7) in the limit as g —« and they coincide
with the results obtained in [5].

4. We consider now the case of a dilatational liquid (u = p; /45 < 1). The dependence of the zone
boundary a and the stationary amplitude vy on the Rayleigh number is shown in Figs. 2 and 4. Just as in
the pseudoplastic case, the point r= p¥%r is a critical point in the sense of the stability of equilibrium
relative to small perturbations; for r > u’/“ n the equilibrium is unstable. Stationary motion of finite ampli-
tude exists in the interval /%t <r< . At the point r= p!/4r, through a jump, there arises a stationary
motion with the amplitude vi, =B/7u , and as r increases, the amplitude vy, increases monotonically, tend-
ing towards infinity as r — 7. The asymptotic expressions (3.1) and (3.2) continue to hold even in the
case u < 1.

In the casey < 1 a stationary plane-parallel motion of finite amplitude in the region p!/47r < r < 7 is
stable, Small perturbations of equilibrium in this region grow, and, upon the attainment of a limiting stress
in the flow, layers of large viscosity arise. An increase in the effective viscosity of the system leads to a
stabilization of perturbations and to the establishment of a stationary amplitude v,,. For r > r, there can
be no stable stationary plane-parallel motion, since for such Rayleigh numbers small perturbations of
equilibrium increase without bound, even in the case of a Newtonian liquid with a large viscosity u,.

The case of a limiting dilatational characteristic (curve 4 in Fig, 1) is obtained for y— 0 and B— 0
(the ratio B/u, being the dimensionless value of the limiting velocity gradient v,', stays finite). From the
general expressions (2.6) and (2.7) we obtain

1 B
a:T, Uy = (tg%+th%)

2ur
In this limiting case the equilibrium is unstable for an arbitrarily small temperature gradient; a
stable stationary motion exists in the region 0 <r< 7.
5. We consider a liquid whose behavior corresponds to the rheological power-law
T = k|v |*sign v’ (5.1)

where n is an exponent and k is the coefficient of consistency. To determine the stationary plane-parallel
motion in a layer of power-law liquid, the problem (1.3)-(1.5) must be solved with the rheological law (5.1).
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We choose the following as our units: distance h, velocity (x /b) RY (0-1) ang temperature AhRY(2-1),
where R=pgBANR+2/k 1 js the modified Rayleigh number.

In dimensionless variables the problem assumes the form

| "sign?’ '+ 8 =0, 6"+ 2=0]
t 5.2
p(E)=0(EN=0, \ww=0 (5.2)
-1
This problem does not contain the Rayleigh number R; the exponent n is the only parameter deter-
mining the solution. '

For the purpose of obtaining a numerical solution the equations were reduced to a system of four
first order equations. This system was integrated from the point x=0 to x=1 (we have in mind here an odd
solution). The missing boundary conditions at the left end were determined by inspection until the boundary
conditions at the right end could be satisfied with sufficient accuracy. Inthe numerical integration we used
the Runge —Kutta and the *predictor-corrector* methods. As a result we obtained the distribution v(x) and
6 (x) for various values of n. In the case n < 1 we have a plateau on the velocity profiles which is charac-
teristic of pseudo-plastics; for n > 1 corners are formed alongside the point x=1/2. These profiles are
close to those given in [6] for the case of the flow of a power-law liquid in a channel heated from the side.

Numerical integration of the system (5.2) enables us to determine the maximum dimensionless velo-
city depending on n. The calculations lead to the empirical dependence vy, ~ = -4/(n-1), Taking note of the
units chosen, we can represent the maximum dimensional velocity in the form

e R \N(n-y)
Um =C—} e

Here Ry= n? is the critical Rayleigh number in the case of a Newtonian liquid (n=1), and the coeffi-
cient ¢ is a slowly varying function of n. In the interval 1/3 = n =< 2 ¢ we have, with sufficient accuracy,
c=0.34.

In the case n < 1 (pseudo-plastics) the amplitude v, of the velocity of the stationary motion decreases
monotonically from infinity to zero as R increases; as n is varied we obtain a family of hyperbolas of vari-
ous orders (the analog of the curves in Fig. 3). This case differs from the case of a piecewise-linear char-
acteristic in that the equilibrium is stable with respect to small perturbations for all R. This is explained
by the infinite initial viscosity of a power-law pseudo-plastic. For all R, however, we have instability with
respect to finite perturbations exceeding the magnitude vy,. A stationary mode with the velocity v, as in
the case of a.piecewise-linear characteristic, is unstable.

For n> 1 (dilatational liquids), equilibrium is unstable with respect to small perturbations for all R,
beginning with arbitrarily small perturbations (zero initial viscosity). The stationary plane-parallel mode
with the velocity vy, is stable. The velocity vy, increases monotonically from zero depending upon the
increase in R; the curves vm(R) for n> 1 constitute a family of parabolas of various orders (the analog of
the curves in Fig. 4).

The autbors thank D. V. Lyubimov for his help in carrying out the calculations.
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